

e2v CCD and CMOS technology developments for astronomical sensors

Paul Jorden SPIE AS14, 9154 Detector conference

Co-authors Doug Jordan, Paul Jerram, Jérôme Pratlong, Ian Swindells. e2v

23 June 2014

© e2v

Introduction

Themes of this presentation

- CMOS imagers for astronomy
- EMCCD developments
- Red Sensitive CCDs
- Major space CCD programmes
- Cameras and Systems

CMOS imager programmes-1 TAOS-II CIS113 sensor

e2v

TNO detection by occultation See Shiang-Yu Wang poster

Sensor: 1920 x 4608 16 µm square pixels. 8 segments for parallel read-out Independent access of left and right sides Multiple ROI mode for 20 fps sampling rate Noise floor < 5e⁻_{RMS} and low dark current. Backthinned for 90% QE Saturation signal (node) ~ 18 ke-Each focal plane: 10 buttable image sensors 3 focal planes to be built for three telescopes

Frontside samples to be tested Jul-14

CMOS imager programmes-2 NGSD/LGSD CIS112 sensor

See Mark Downing talk

- Designed for AO WFS
- 20X20 pixel sub-arrays
- 24 um pixels
- Backthinned for high QE
- < 3 e- read-noise target
- LGSD (later) & NGSD ("1/4"-size)

NGSD 880 X 840

Prelim BT samples to be tested next month

© e2v

CMOS imager programmes-3 CIS115

CIS115 architecture; four outputs

Typical back-illuminated QE

The CIS115 is derivative from the CIS107 [developed with Astrium, CNES]. See poster by Shiang-Yu Wang about CIS107 measurements.

To be supplied as demonstrator device, mainly for prospective space missions; designed as one "quadrant" to allow a 4k X 3k imager.

Intended for ESA JUICE mission

CIS115 measurements

1504 X 2000, 7 um pixels

Performance overview	CIS115	CIS107		
	Pixel 4	Pixel 1	Pixel 6	Pixel 10
Dark Current at 21°C				
Mean (µV/ms)	0.24	0.32	1.46	0.32
DSNU rms (μV/ms)	0.69	0.67	1.94	0.35
Mean dark current (e-/pix/sec)	4			
Readout Noise in Darkness				
Readout Noise (µV)	257	264	280	213
Readout noise (e-)	4.5			
Signal Characteristics				
Peak output voltage	~1800 mV	~1300 mV	~1100 mV	~800 mV
Peak signal (e-)	36,000			
CVF (μV/e-)	50	57	62	13

- CMOS imagers for astronomy
- EMCCD developments
- Red Sensitive CCDs
- Major space CCD programmes
- Cameras and Systems

EMCCD developments CCD282

Main features

- •4k X 4k image area
- •12 µm pixels
- •Split frame transfer sections

e₂v

- •8 EMCCD outputs
- •Sub-electron readout noise
- •Min. 4 fps at 10 MHz pixel rates
- •Designed for photon counting
- •Non-inverted (non-MPP) operation at cryo temperatures
- •Backthinned for high spectral response; 90% peak
- •Alternate formats possible; TBC

See Jean-Luc Gach talk

- CMOS imagers for astronomy
- EMCCD developments
- Red Sensitive CCDs
- Major space CCD programmes
- Cameras and Systems

CCDs with high red sensitivity-1 LSST CCD250

- 4k X 4k 10 µm format
- 189 science sensors
- 100 µm thick; 5 um flat
- High precision SiC buttable package
- 16 outputs; 2 s readout
- 5 e- read-noise

Pictures courtesy: LSST

See Peter Doherty talk

CCDs with high red sensitivity-2 CCD261

- 2k X 4k, 15 µm pixels
- 200 µm thick
- 2.5 e- noise floor
- Precision Buttable package

CCD261 2000 X 256 15 um pixels

• Deep depletion together with inverted mode operation (patent)

Picture courtesy: Andor iDus 416 spectroscopy camera

© e2v

CCDs with high red sensitivity-3 X-ray detection

CCD262-50

- 1024X512, 50 µm pixels
- Deep depletion (40 µm thick); 80% QE @ 6 KeV
- Low noise from 8 ports \bullet
- Fully depleted for good MTF (front illuminated)

CCD292-50 second generation for XFEL (Riken)

- 1024X512, 50 µm pixels
- High-rho (>200 µm thick) for higher QE @ 12 KeV
- Back illuminated

Samples delivered

- CMOS imagers for astronomy
- EMCCD developments
- Red Sensitive CCDs
- Major space CCD programmes
- Cameras and Systems

Major recent space programmes-1

Pictures courtesy: ESA, Astrium

GAIA CCD91-72, 106 FMs 4500 x 1966 10 X 30 µm pixels

Operational Largest focal plane in space

See Plenary

Euclid CCD273-84

4096 X 4096 12 μm pixels Development phase complete Qualification phase in progress (sample devices) Two year Flight phase to follow in 2015 (36+ spare FMs)

Plato CCD270

4510 X 4510 18 μm pixels; 4 CCDs per FPA 34 FPAs. Will be largest focal plane area Development phase complete Validation phase soon (24 devices) Flight phase to follow (152 FMs)

Major recent space programmes-2 Rosetta

e2v

Launched in March 2004 to reach comet <u>67P/Churyumov–</u> <u>Gerasimenko</u> in August 2014. Has now covered 6.3 billion km

Six e2v instruments on Rosetta

Orbiter: <u>Navcam</u> CCD47-20, <u>OSIRIS</u> 2 CCD42-40 cameras, <u>VIRTIS-M</u> TH7896 **Lander**: <u>ROLIS</u> and <u>CIVA</u> both useTH7888 in micro-cameras

- CMOS imagers for astronomy
- EMCCD developments
- Red Sensitive CCDs
- Major space CCD programmes
- Cameras and Systems

Cameras and systems-1 OSU-KMTN focal planes

e2v

Korea Micro-lensing Telescope Network (KMTN)- overview

- Three 1.6-m southern-hemisphere telescopes.
- Continuous monitoring of micro-lensing events in the galactic bulge.
- Each telescope equipped with a 340 megapixel camera.
- OSU designs and builds the three cameras with electronics
- e2v designs and builds the three focal planes with sensors
- Custom-designed precision cryogenic detector mounting plates
- Optimised custom sensors

Top surface of plate

Assembly pictures of components

Lower surface: gold-plated Silicon Carbide

See Bruce Atwood poster

CCD47 being inserted

CCD290 ready for insertion

© e2v

Cameras and systems-2 OSU-KMTN focal planes

OSU cryogenic camera

e2v detector mounting plate:

- Four 9k x 9k Science CCDs
- Four 1k x 1k FT Guide CCDs
- Precision Silicon Carbide plate
- Surfaces co-planar to 40 µm p-v

Lower view with sensors installed

Thermal & mechanical FEA

It fits in the metrology machine!

All sensors assembled onto plate

Three complete focal plane assemblies delivered to OSU

Cameras and systems-3 J-PAS 1.2 Giga-pixel camera

See Richard Harriss talk

Cameras and systems-4 J-PAS 1.2 Giga-pixel camera

Three types of CCD:

- 14 x CCD290-99 (Science CCDs)
- 8 x CCD44-82 (Wavefront Sensors)
- 4 x CCD47-20 (Autoguider CCDs)

Camera includes:

- · Readout electronics for all the CCDs
- 22 CCD drive modules
- · Power and data handling electronics
- Multiple FPGAs to read 2.4 GBytes of data/ frame
- Digital CDS (Correlated Double Sampling) readout
- Designed for $< 5 e^{-}$ noise performance

Camera features:

- Cryogenically cooled using mixed phase LN2
- PLC for the cooling and vacuum systems control

Focal plane

assembly

Cameras and systems-5 CCD sensors for J-PAS

CCD290-99 science sensors 9216 X 9232 format, 10 µm pixels 92 X 92 mm image area

- All at 20.00 mm height
- All have same spectral response
- All used with differential outputs
- Flex cables for FPA assembly

CCD47-20 guiders 1024 X 1024 Frame-transfer 11 X 13 mm image area

CCD44-82 wavefront sensors 2048 X 2048 Frame-transfer 31 X 31 mm image area

Cameras and systems-6 WSO-UV detectors

Triple detector system [INASAN instrument concept]

Detector characteristics- CCD272

Characteristics	VUVES	UVES	LSS
Spectral range, nm	115-176	174-310	115-310
Size of photosensitive , mm	37.3 x 49.1	37.3 x 49.1	37.3 x 49.1
Pixel size, μm	24	24	24
Quantum efficiency, not less than, %			
at wavelength 120 nm	20	· ·	20
at wavelength 150 nm	30	· ·	30
at wavelength 175 nm	25	25	25
at wavelength 250 nm		50	50
at wavelength 300 nm		50	50
Readout noise, not more than, e ⁻ , sd	3	3	3
Digitalization, bits	14	14	14
Dark current, not more than, e'/pixel/hour			
At beginning of life	12	12	12
At end of life	36	36	36
Exposure time, sec	1-3600	1-3600	1-3600
Dynamic range in one frame, not less than	10000:1	10000:1	10000:1

- Customised coatings for UV application
- Custom permanently sealed enclosure with heat-pipe
- Low noise differential digital (DCDS) low noise electronics

Acknowledgements

Thanks to many colleagues at e2v who contributed material and to others associated with projects and developments described here.

References at this meeting

Jean-Luc Gach, *Development of EM CCD282*, 9154, Sun 22nd Mark Downing, *NGSD CMOS imager for E-ELT*, 9154, Mon 23rd Richard Harriss, *Giga-pixel camera for J-PAS*, 9154, Mon 23rd Bruce Atwood, *KMTN camera system*, 9154 poster, Mon 23rd Shiang-Yu Wang, *e2v CMOS sensors*, 9154 poster, Mon 23rd Shiang-Yu Wang, *CMOS camera for TAOS-II*, 9147 poster, Mon 23rd Matt Lehner, *TAOS-II survey status*, 9145, Tues 24th Philippe Feautrier, *Advanced AO sensors*, 9148, Tues 24th Peter Doherty, *Testing of fully depleted CCDs for LSST*, 9154, Tues 24th

Thanks for your attention

P Jorden et al, SDW 2013, The KMTNet 340 Megapixel focal planes, in press 2014

D Jordan et al, SDW 2013, A novel 4k4k EMCCD for scientific use, in press 2014

K Taylor et al, JAI 2013, JPCam: a Gpixel camera for J-PAS

B Atwood et al, SPIE 8446-246, 2012, Design of the KMTNet camera

M Downing et al, SPIE 8453-12, 2012, Back-illuminated 700 fps imager

P Jorden et al, SPIE 8453-20, 2012, A Gigapixel cryo camera for J-PAS

B Diericks et al, IEEE IISW, 2011, Backthinned 700 fps WFS imager

P Jorden et al, SPIE 7742-19, 2010, Improving red wavelength sensitivity